Tectonic and isostatic adjustment
Tectonics is the process that controls the structure and properties of the Earth's crust and its evolution through time. In particular, it describes the processes of mountain building, the growth and behavior of the strong, old cores of continents known as cratons, and the ways in which the relatively rigid plates that constitute the Earth's outer shell interact with each other. Tectonics also provides a framework for understanding the earthquake and volcanic belts that directly affect much of the global population.
Isostatic Adjustment. Isostacy is the state of gravitational equilibrium between Earth's crust (or lithosphere) and mantle such that the crust "floats" at an elevation that depends on its thickness and density.
This concept is invoked to explain how different topographic heights can exist at Earth's surface. When a certain area of Earth's crust reaches the state of isostasy, it is said to be in isostatic equilibrium. Isostasy does not upset equilibrium but instead restores it (a negative feedback). It is generally accepted[1] that Earth is a dynamic system that responds to loads in many different ways. However, isostasy provides an important 'view' of the processes that are happening in areas that are experiencing vertical movement. Certain areas (such as the Himalayas) are not in isostatic equilibrium, which has forced researchers to identify other reasons to explain their topographic heights.
Post-glacial rebound produces measurable effects on vertical crustal motion, global sea levels, horizontal crustal motion, gravity field, Earth's rotation, crustal stress, and earthquakes.